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ABSTRACT

Collocation methods using both cubic polynomials and splines

in tension are developed for second order linear singularly-

perturbed two-point boundary value problems. Rules are developed

for selecting tension parameters and collocation points. The

methods converge outside of boundary layer regions without the

necessity of using a fine discretization. Numerical examples

comparing the methods are presented.
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1. Introduction

We consider the numerical solution by collocation methods of

the singularly-perturbed second-order linear boundary value problem

(1.1) Ly - cy'' + p(x)y' + q(x)y = f(x) , a < x < b ,

(1.2) Ctl 1y(a,e) + 12 y' (a,e) = A, a21y(b,e) + a22y' (b,e) - B

where e is a small positive parameter. The functions p,q, and f

are assumed to be smooth functions of x on [a,b] which, along with

aij, i, j = 1, 2, A, and B, may depend on E provided they are

bounded as E - 0. We further assume that (1.1,2) has a unique

solution on [a,b] for all e sufficiently small.

The problem (1.1,2) has been intensively studied analytically

(cf. Cole [6], Eckhaus (11], or O'Malley [18]) and it is known

that its solution generally has a multiscale character, i.e., it

features regions called "boundary layers" where the solution

varies rapidly. Away from the boundary layers, the solution is

approximately determined by neglecting the ey'' term in (1.1)

and perhaps one or both of the boundary conditions (1.2).

The problem has also been extensively studied numerically,

and it is known that most classical methods fail when e is sriall

relative to the mesh width h that is used for the discretization

of the operator L. There are, however, several finite difference

methods (cf. Abrahamson, Keller, and Kreiss [1], Berger, et al. [41,

I1'in [161, Kreiss [17], and Pearson [19,201), Galerkin-finite

element methods (cf. Hemker (151, de Groen and Hemker [101, and

Heinrich, et al. [13,141), and methods based on singular perturba-

tion theory (cf. Flaherty and O'Malley [12] and Steele [28]) that
do not require h/e to be small. AIR FO iCZ OFFICE OF SCIUNTIFIC RESEARCH (ASC)
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Our aim in this paper is to show that collocation methods

with either piecewise polynomials or splines in tension can furnish

accurate numerical approximations of (1.1,2) when either h/e is

small or large. Splines in tension were first used by Schweikert [26]

as a means of eliminating spurious oscillations in curve fitting

with cubic splines. They have been subsequently studied by Cline

[5], Pruess (221, Spath [27], and de Boor [9, Chap. 16]. Between

knot points a spline in tension, or a taut spline in the language

of de Boor (91, is an L- spline satisfying the differential equation

(1.3) (T - p2T)" = 0

subject to appropriate continuity conditions at the knots. The

quantity p is called the tension parameter. When p = 0, t is a

cubic polynomial spline; however, when p > 0, the solution of

(1.3) is a linear combination of the four functions 1, x, epx , e-Px.

The exponential functions should be better suited than polynomials

at following the rapid variations that are typically found in

singular perturbation problems. Indeed, exponentials have been

used in the Galerkin methods of Hemker [15] and de Groen and Hemker

[10], Il'in's difference method [161, and the singular perturbation

methods of Flaherty and O'Malley [12] and Steele [28].

Equation (1.3) is the same as that for the transverse deflec-

tion of a classical Euler-Bernoulli elastic beam that is subjected

2to a tensile force proportional to p ; hence, the name spline

in tension.

In Section 2 of this paper, we construct a basis for the

tnesion splines and use it to obtain the collocation eauations.

In Section 3, we obtain asymptotic approximations to the solution

of (1.1,2) in the two special cases when jp(x) f >T > 0 and when
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p(x) 0 on [a,b] and use these to select tension parameters.

In Section 4, we discuss the selection of collocation points that

are in some sense optimal and present some formal error estimates

in regions not containing boundary layers. In Section 5, we

apply our methods to some examples; and in Section 6, we discuss

the results.

Not surprisingly, the results indicate that taut splines

provide better approximations within boundary layers and poly-

nomials provide better approximations elsewhere. This suggests

the possibility of applying tension only within boundary layers.

This would either require an a priori knowledge of the location

of the boundary layers or an automatic procedure for finding them.

A tentative procedure for automatically lc'ating boundary layers

is presented in Section 5.

We anticipate that our methods would be useful on other pro-

blems, such as initial-boundary value problems for parabolic partial

differential equations involving diffusion, convection and/or

reaction.

2. Collocation Equations and the Tension Spline Basis

In the usual method of collocation (cf. Ascher, Christiansen,

and Russell (2], de Boor and Swartz [8], Russell (23], or Russell

and Shampine [251), one introduces a partition

(2.1) A -{a = x < x < . . . < xN = b}N ~0 1

of [a,b] into N subintervals and approximates the solution of

(1.1,2) by piecewise polynomials Yh(x) E M(AN,k,m), where

(2.2) M(N'k,'m) E {wECm[ab]lwrestr. to IPk(Ii); i = 1,2,...,N}

Here

(2.3) I (Xi 1 ,x i )
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and Pk(E) denotes the class of polynomials having at most degree

k in E. The dimension of M( ,k,m) is N(k-m) + m + 1 and one
n

determines Yh(X) by collocating at N(k-m) + m - 1 points

zi E [a,b], i.e., by enforcing

(2.4) Lyh(Z i) = f(z i) , i = 1,2,...,N(k-m) + m - 1

and by requiring yh to satisfy the boundary conditions (1.2).

Convergence and the order of accuracy of these methods depend on

m,k,AN , and the choice of z. and are discussed in, e.g., [8].

However, Lyh should exist and necessary continuity conditions on

M(A Nk,m) are k > 2 and m > 1. In addition, de Boor and Swartz [8]

show that the maximal order of convergence in the largest sub-

interval length is achieved by selecting the collocation points

as an appropriate number of Gauss-Legendre points on each subinterval.

Unfortunately, collocation at the Gauss-Legendre points with

piecewise polynomials is knovn to behave rather poorly on singularly-

perturbed problems for any partition where e is much smaller than

the minimum subinterval length (cf. Hemker [15] and our Example 1

in Section 5). It would be overly restrictive and in most cases

impractical to require a partition with subinterval lengths of

order E and we seek to avoid this situation by changing the loca-

tions of the collocation points and/or adding exponential functions

to M(A Nk,m). Thus, we also consider approximations

Yh(x) E E(AN'k,m,o), where

E('Nkm,) - {w cm [a,bllwt to E s span (P (Ii),ret. oI k i

(2.5 e e ; i = ! 2,. .,N
4nd

(2. 6) h x xi l 1,2,...,N

The ---uantities oi, i =1,2,...,N, are called tension parameters
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and will subsequently be selected to approximate the rapidly

varying part of the exact solution of (1.1,2).

In this paper, we have confined our attention to collocation

with piecewise cubic polynomials belonging to M(AN, 3 ,1) and splines

in tension or taut splines belonging to E(ANII,), which are

both spaces of dimension 2(N+1). For reasons of computational

convenience and efficiency, it is usual to construct a basis for

M(AN, 3 ,1) that satisfies the C I[a,b] continuity requirement and

where each element has support extending over only two subintervals.

We proceed similarly for E(AN",,1,P); thus, we write Yh(x) in the

form
N

(2.7) yh(x) = 7 [ciTi(x,) + dii C ~
i=O 1 1

where the basis Ti(x,p), i(x,p), i = 0,1,...,N, is defined in

terms of the "canonical basis elements" n0 and n as follows:

X.-X
1

n0 ' Pi ) 'XFX xi l x i

X-X.

(2.-8) TxP=n0 - -  Pi+l) , x C [xioxi I(x hi+ ' ~

0 ,otherwise

and

X.-X
" h i n l ( - .- -1 r i , x E [ X i l X i

1 h

x-x.(2.9)ai (x,p)=. hil ( h , Pi+l) X [xix i+]
i+l

0, otherwise

The functions n 0(s,p) and n.l(S,p) are defined on 0 <_ s <_ as

and



sinh p/2(2s-1)
(2.10) n ( s , p ) 1 - s + K0 (2s - 1 sinh /2] '

sinh p/2(2s-l) 1 cosh p/2(2s-l)]

(2.11) nl(S'p) [ K 2s - 1 -- sih-p/2 + 1 - cosh P/2
2 0cosh p/2

where

(2.12) K = 1/pw(p/2), K1 = (i/P)coth P/2, w(z) = coth z - l/z
0

Observe that n0 and TI each satisfy the differential equation

(2.13) (T - 2 k) = 0 , 0 < s < 1 , k = 0,1,

subject to the boundary conditions
I I

(2.14) nk0'P) = 60k ' ,p = 0 nk(0' = 61k ' k('P) = 0 , k = 0,1,

where 6i denotes the Kronecker delta and, in this context,

denotes differentiation with respect to s. Using (2.14) and (2.7-9),

we see that c i  Yh(xi) and d = dYh(xi)/dx , i = 0,1,...,N.

As p tends to zero nO and n, approach the usual canonical basis
elements for M(A N,3,1), i.e., that of a cubic Hermite interpolating

polynomial on 0 < s < 1. Thus,

(2.15) n 0 (s,p) = (l-s) 2(1+2s) + 0(p 2 ) , 7 1 (s,p) = s(l-s) 2 + 0(p 2

For large values of p n0 and n become

1 [2s-l+e~-e _-(1-s)] +0(-Pp
(2.16) n(s, p) = 1 - s - -+ Oe /P)

p= p-1 [l)s-e-PS 1 -P(l-s) 1 + 0(e-/P)!(s P (p-2) p(p-2) [-e P] +  0 -/ ) "

Thus, in the interior of (0,1) no and n, are asymptotically given

by the linear functions

no(s,p) - (l-s) - (2s-l)/(p-2) , ri(s,p) - (l-s)/p- (2s-l)/o(p-2)

Both n0 and n I converge uniformly on 0 < s < 1 as p to 1-s and 0,

6



respectively; however, their derivatives exhibit boundary layer

behavior at s = 0 and 1. Since T.i and a . (via. (2.8,9)) behave

similarly at the knots xi 1, xi , xi+1 , the numerical approximation

Yh may have internal boundary layer jumps of height 0(1/p) even

when the exact solution is smooth. We demonstrate this phenomena

in example 1 of Section 5. The functions n0 and n are plotted

for a small and a large values of p in Figures la and lb, respectively.

A discrete system for determining ci,d i , i = 0,1,...,N is

obtained for a given set of tension parameters pii=l,2,...,N by

collocating at 2N points z,il=1,2,...,N on [a,b] and by satisfying

the boundary conditions (1.2). For simplicity we place two collo-

cation points symmetrically disposed on each subinterval, i.e.,

(2.17) z2i-1 = xi 1 + tih i  , = xi 1 + (1-ti)hi , i = 1,2,...,N,

for an appropriate choice of ti e [0,1/2). Then, using (2.17),

(2.7-9), and (1.1) in (2.4) we find the discrete system on I. to

be

z£ii (t i) £1i2 (t i) t i3 (t i) 2 i4 (t i) c i-i f (t i)

(2.18)=
£i~-i )  Xi2(l-ti )  £3lt )  £4lt~ i 1 (- i

d.
1

i = 1,2,...,N

where

2 ''zil(t) = (0/h )no (t'Pi) + (Pi(t)/hi)n0 (t'Pi) + qi WT 0(t'0 )  '

zi2(t) = (/hi)n 1 (t,0 i ) + Pi(t)nl(t,1 i ) + qi(t)hinl(t,0 i )

(2.19) 2
i3 (t) = (e/hi2 )n (l-t,p i ) - (pi(t)/hi)no0 (l-t,Pi) + qi(t)n0 (!-t,pi )

£i4(t) = -[(c/hi)n I  (l-t,0 i  -Pi(t)nl(l-t,Pi) + qi(t)r l(l-t, pi)]

ii4
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and fi(t) -f(xil +th), etc. Substituting (2.7-9) into (1.2)

gives the boundary conditions

(2.20) llc0 + a 12d 0 
= A a 21cN +a 2 2 dN = B

Thus, the 2(N+1) dimensional aiscrete system (2.18-20) has the

following structural form

x x c0  A

x x x x do f 1 (t1 )

x x x x c1  f1 (1-t 1 )

x x x x dI1

(2.21) x x x x • -

x x x x fN (tN)
IN N

x x x x CN fN (l-tN)

x x dN B
L J L~ J L_

where each x denotes a nonzero entry. We solve (2.18-20) for

prescribed values of pi and ti, i = 1,2,...,N, by an alternating

row and column pivoting algorithm due to Varah [29]. This procedure

is numerically stable and requires no storage additional to that

needed for the nonzero entries in (2.21).

3. Asymptotic Solutions, Green's Functions, and the Selection of

Tension Parameters

In this section, we present asymptotic approximations of the

solution of (1.1,2) and of its Green's function. They will be

used to select the tension parameters and in Section 4 to select

collocation points. We shall not attempt to do this in all gener-

ality, but rather by considering two special cases of the problem

8
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(3.1) Ly = Ey + p(x)y + q(x)y = f(x) , a < x < b,

(3.2) y(a,E) = A , y(b, ) = B

when (Problem 1) [.p(x)I > p > 0 and (Problem 2) when p(x) E 0,

q(x) <_j < 0 for xc[a,b]. In either case, any boundary layers

are at the ends of [a,b]; thus, there are no turning points and

no interior nonuniformities. We consider such problems among the

examples of Section 5.

The Green's function G(x,E) associated with the operator L

and homogeneous boundary conditions (3.2) on the interval [a,b]

satisfies

(3.3) L*G(x, ) E G - (p(E)G) + q(E)G = 0,(a,x) U (x,b),

(3.4a) G(x,a) = G(x,b) = 0 ,

(3.4b) G(x,x +) - G(x,x-) = 0

(3.4c) GE(x,x +) - G (x,x ) 1/6

where the subscript E denotes partial differentiation.

We use the WKB method to construct our asymptotic approximations

of the solutions of (3.1,2) and (3.3,4). Since the details of

this method are well known (cf. Wassow [301), we only present the

results and omit their development.

3.1. Problem 1: jp(x) I > p > 0 for xE [a,b]

We consider the case when p(x) > 0 on [a,b]. The case when

p(x) < 0 is handled in an analogous manner. Using the WKB method,

we find the following 0(c) approximations to the two fundamental

solutions of (3.1) (cf. Hemker [151):

3.5a,b) Y(x,j) = exp, q(z)/p(z)dz} , ( ,x) = exp{-'X(p(z)/E-q(z)/p(z) )dz

The solution of (3.1) satisfying the boundary conditions (3.2) is

given by

9



(3.6a) y(x,E) = Y (X) + [A - Y R(a)I I(a,x) + 0(C)

where
b

(3.6b) YR(x) = BY(x,b) - fb(f(z)/p(z))Y(x,z)dz
x

The term (A - YR(a)]rI(a,x) is exponentially small outside of a

boundary layer of width 0(c) near x = a. For a < x < b y(x,e) - Y (X),

where YR(x) is the solution of the reduced problem

(3.7a) p(X)YR(x) + q(x)YR(X) = f(x) , a < x < b

(3.7b) Y R(b) = B

obtained by neglecting the ey term in (3.1) and the boundary con-

dition (3.2) at x = a. The problem with p(x) < 0 has a solution

with a boundary layer near x = b and a reduced solution satisfying

(3.7a) subject to the initial condition Y R(a) = A.

In a similar manner, an 0(c) approximation to G(x,E) satisfying

(3.3,4) is found as

(3.8a) G(x,Z) = c(x){1( ,b)Y*(a,b)[f(a,x) - Y*(x,a)]

{ (E,x) ,a < E < x

-'](a,x)Y*(a, ) + - - } + 0(C)
IY*(x, ) , x < <b'

where
2!

(3.8b) a(x) = - p(x)/[p 2(x) - 2eq(x) + Ep (x)]

(3.8c) Y*(x,i) = exp { f (q(z, - p (z))/p(z)dz

x

and f( ,x) is as in (3.5b). As a function of E, G(x,E) has boundary

layers at = b and E = x

3.2. Problem 2: p(x) 0 , q(x) < q < 0 for xc[a,b].

In this case, the WKB method gives the following 0(v'T) approxi-

mations to the two fundamental solutions of (3.1) (cf. Hemker [151).

(3.9a,b) . (1  (x,Z) =1 ) , H2 (x,E) = q(x)- 1/41(,x)

10



where for this problem

(3.9c) 11( ,x) = exp {- x '-q(z)/c dz}

The character of the solution depends critically on the sign of

q(x). When q(x) < 0, the solution is exponential; and when q(x) > 0,

the solution oscillates rapidly with period 2.el/q(x) . We would

not expect taut spline approximations to be useful in the oscillatory

case and, thus, we confine our attention to problems with q(x) < 0

on [a,b]. The use of "splines under compression" for oscillatory

problems is currently under investigation by Coyle and Flaherty (7].

Using (3.9), the solution of (3.1,2) is given as
(3.10) y(x,e) = [A - f(a)/q(a)] [q(a)/q(x)] 1/4 (a,x)

+ [B - f(b)/q(b)] [q(b)/q(x) 1 /411(x,b) + f(x)/q(x) + 0(VT)

Outside of the boundary layers, which extend over 0(/_) neighbor-

hoods of x = a and b, the solution y(x,e) YR(x), where YR(x) is

the solution of the reduced problem

q(x)Y R(x) = f(x)

obtained by neglecting the ey term in (3.1) and both boundary

conditions (3.2).

Problem 2 is self-adjoint, so the WKB approximations (3.9)

can also be used to construct the following 0(l) approximation to

G(x, ) satisfying (3.3,4):

12
(3.11) G(x, ) = lfc q(x)q( )]-!/ 4{ll(a,x)1T(a,.E) + ]T(x,b)II( ,b)

n( ~ ) , a < < x + 0
1 (x, ) x < < b

As a function of , G(x, ) has boundary layers on both sides of

= x, and is unbounded as 0(l//e) as E - 0.

i1



3.3. Selection of Tension Parameters

We want the tension parameters to approximate the rapidly

decaying solutions (3.5b) or (3.9) of Problems 1 or 2, respectively,

and so we choose pi on the subinterval I. as

Ip(xk)/e - q(xk)/P(xk)I , if IP(xil )+P(Xi) I/e > Iq(xil )+q(xi)I

(3.12a) pi = hi 1

- [q (x il )+q (x i ) ]/2c , if Ip(xi1 l)+P(xi) j/E < Iq(xi)l )+q(xi)l

i = 1,2,... ,N,

where

i - 1 if [p(xi_) + P(xi)We > 0

(3.12b) k =

i if [P(xi 1 ) + P(xi)]/E < 0

Thus, for Problem 1 with p(x) > 0 on [a,b]

(3.13a) Pi = hilp(xi-l)/c - qlxi-l)/P(Xi-1)

and for Problem 2

(3.13b) Pi = hi -fq(x i-l) + C(xi/2"

However, we use (3.12) computationally even when the conditions

of Problem 1 or 2 are not satisfied, e.g., when there are turning

points.

The solution of the collocation equations (2.18-20) with the

tension parameters specified by (3.12) will give the exact solution

of (1.1,2), for any choice of t. £[0,1/2), whenever f(x) is a linear1

polynomial and either 1) p(x) - p and q(x) - 0 or 2) p(x) - 0 and

q(x) S < 0. This is because the solutions of these problems

are elements of the approximating space E(N,,I,p).

We close this section by applying the method of collocation

with splines under tension to the example

12



I I

(3.14) Ly -£y + p(x)y = f(x), a < x < b, y(a) = A, y(b) = B,

with p(x) > 0 on [a,b]. Using (3.5,6) the solution of this problem

is x
(3 .15a) y(x,E) = YR(x) + (A - YR(a)] exp {-f(p(z)/E)dz}

a

where

(3.15b) YR(x) = B - fb (f(z)/p(z))dz
x

For the present, we choose t. = 0 and then use (2.10-12) and (2.19)

in (2.18) to obtain the discrete system
) 9 (V 'i 2 1. 1 ppi)d+ 1fd.

(P i/h i - 2 ) w( coth li+ -l-i = f(xi_i),

(3.16) (cPi/hi) - l±di) w1 (Pi/2) - 2d. coth pi/2 + P(xi)d i =
1

i = 1,2,..,N

C0 = A , N B

where

(3.17) V( +( ) - (  i-i ' ( )i ( )i + ( ).

and w(z) is defined by (2.12). Using (3.13a) we select pi = iP(Xi-l)/E

and assume that the partition has been chosen so that pi >> 1,

i = 1,2,...,N. In fact, suppose that pi is large enough to

approximate w(pi/2) and coth pi/2 by (1-2/p i ) and 1, respectively.

Then (3.16) become

(e/h i )(2Vci/h i - pdi) + P(xi-l)VCi/h i = f(xi I )

(3.18)
("Ip(X))d f(x i ) , i = 1,2,...,N, c 0 = A, cN =B

Thus, the solution is approxiamtely determined as the solution of

3.19a,b) cN = B , P(Xi )7ci/h i = f(x i_) + 0(E/h i ) , i = N, N-1,... ,2,

(3.19c) (;Ip(xi))d i  = f(x i ) , i = N,N-I,...,l,

13



1 19d, e) c0 = A, d o =-(p(a)/e)[c O -c +hlf(a)/p(a) + 0(c/h 1 )]

Equations (3.19a,b,c) can be recognized as 0(h) (where h is the

maximum subinterval length) "upwind" difference approximations to

the reduced problem, while (3.19e) gives the initial slope of the

solution in the boundary layer correct to 0(h/c).

4. Selection of Collocation Points

Our aim in this section is to suggest some special choices

of collocation points that may be used to reduce the errors in methods

for Problems 1 and 2. We confine our attention to the two limiting

cases of zero tension (Pi - 0) and large tension (Pi >> 1) for

i = 1,2,...,N. For simplicity, we consider uniform partitions

with h = hi, i = 1,2,...,N, and assume that hp(x)/c >> 1 for

Problem 1 and h/'-q(x)/E >> 1 for Problem 2. No detailed rigorous

error analysis will be given; however, some formal error estimates

are obtained on subintervals not containing boundary layers.

4.1. Error Formulas

It is well known (cf. [8], [23], or [241) that the pointwise

error in collocation methods for (1.1,2) satisfies an equation of

the form

(4.1) e (k) (x) y(k (x) - yh (x) = f b  Dk G(x, )r(d k 0,1
a axk

where the residual

(4.2) r(Z) = Ly( ) - Lyh( ) = f(s) - Lyh(C)

It is convenient to introduce the local transformation

(4.3) X = i_ 1  + hs , 0 < s < 1

on the subinterval Ii and, as in Section 2, let fi(s) f(x i-l+hs),

etc. Then (4.1) becomes

14



N ak^
(4. 4) e G(x,xi 1 l+hs) ri(s)ds, k = 0,1,

where

(4.4b) ri(s) = fi(s) - L yh (s)

A ^ 2 )^p A A

(4.5a) LiYi(s) = (e/h)Yi (s) + LR.Yi(s)
1

and LR. is the reduced operator
1

A A A A g A A

(4.5b) LRiyi(s) = (pi(s)/h)yi(s) + qi(s)Yi(s)

Let Pfi(s) be the linear interpolant
1

(4.6) Pf i(s) = [(l-t i-s) f i(t i ) + (s-t i)f i(1-t i)]/(1-2t iAAA

to fi(s) at the two collocation points s = t. and 1 - t. on I..
1 1 1 1

Since the collocation equations (2.4,17) imply Liyh =f at s =t

1 - ti, we have PLiYhi = Pfi and (4.4a) may be written as

N 1 k
(4.7) e(k) (x) = h E  I - G(x,xil+hs) (l-P)ri (s)ds k = 0,1

i=l 0ax

The interpolation error

(4.8) (l-P)ri(s) = (s-ti )(s-1-ti)ri[t i t 1-t i , s

A A

where r i[s0l, ...,Sk] denotes the k th divided difference of r.

at the points sO'sl,..s k . This form of (l-P)ri (s) suffices when

Pi = 0; however, when pi >> 1 a more detailed form is needed. In

this case, we assume that pi is large enough to neglect terms of

O(e ) relative to unity and use the large tension approximations

(2.16) and (2.7-9) in (4.5) to get
A A i  -Pis  A -P (l-s) A A A

(4.9) LiYh 0i2 [e i u i (s) - e Yivi(s)]+LRYh ( s )

where

(4.10) ai = Vci/h - d i-i (Vdi)/p yi = Vci/h - di + (Vdi)/pi

15



4% A A A A A

(4.11) ui(s) = £Pi/h - pi(s) + qi(s)h/pi, vi(s) e £pi/h + Pi(s) + qi(s)h/pi

and Yh(s) is the linear polynomial part of s thus,Yhi  Yh i s)

Pi
(4.12) L Y (S) = P2 [pi(s)(Vci/h - udi/p i )Ri hi

+ qi(s)[(ci 1 + d i-h/Pi )(1-s-1/P i ) + (c i - dih/p i ) (s-i/pi)]

The choice of Pi given by (3.12) makes ui(s) = 0(h) when pi(s) > 0

2
on I i , vi(s) = 0(h) when pi(s) < 0 on Ii , and ui(s) = vi(s) 0(h /Pi)

when pi(s) E 0 on I .

Using( 4 .9 ) and (4.4b), we have
AA 4% 4

(4.13) (l-P)ri(s) = (s-t i )(s-l+t i ){fi[ti,l-ti,s] - LYi[til-ti,s]}
1 1 1 1 Ri hi1

-  u i (s)g(s,t) - Yivi (s)g( l -st)

e-P it i e Pi (1-t i)^^

+ (s-ti)(s-l+ti) e -e u -ts]+Yv[1-tis])
1 1 1-2t. i i  1 i1

- " iui-Pi(1-ti)

-(s-t i ) ( ti)(e i ui [ti,l-ti, s]+e iv itil

where

(4.14) g(s,t i ) = [(l- 2 ti)e + (s-l+ti)e P1 - (s-ti)e 1 1 ]/(1-2t i )

The assumption that terms of O(e ) are negligible will specifically

allow us to drop all terms in (4.13,14) involving the factor
-p. (l-t i )

e 1 1 since t. < 1/2. This will be done in all further uses

of (4.13,14) except where noted.

It remains to use the formulas (4.8) or (4.13) for (l-P)ri(s)

together with the approximations (3.8) or (3.11) for tle Green's

functions in (4.7) and find appropriate choices for collocation

points. One problem is that the errors given by (4.7) depend on

the unknown numerical solution Yh" This would not be a serious

16



difficulty if Yh and Yh were bounded as e - 0 for fixed h. We have

shown by example in Section 3 that ci and di (hence, Yh and yh )

are bounded away from the boundary layer region for c/h << 1 when

t i = 0 and pi is selected according to (3.12). It is reasonable

to assume that this remains so when ti is sufficiently snall; however,

it is also relatively easy to show that di can be unbounded at

every knot point as c/h - 0 when pi = 0 and ti are the Gauss-

Legendre points. Little is known about the behavior of the numerical

solution for other choices of ti and pi. In this paper, we shall

not attempt to find conditions for Yh to be bounded as e - 0, but

rather we shall make some suggestions for collocation points that

should generally reduce the error in methods for Problems 1 and 2.

We note in passing that if Yh and Yh were bounded, arguments similar

to those used by Pruess [21] or Russell and Christiansen r24) on

related non singularly-perturbed problems could be used to remove

the dependence on Yh from the leading order terms in e(x).

4.2. Collocation Points for Problem 1

We again consider the case when p(x) > p > 0 for xe [a,b].

Let x be a knot point, say x., so that there are no discontinuities

in derivatives of the Green's function on any subinterval and apply

the transformation (4.3) to (3.5b) and (3.8c) to get

A(4.15a) TI(xi_1 + hs,xj) = I(xi,xj)wi(s) = 6i. i(s) , i < j

(4.15b) Y*(xj,xi_ 1 + hs) = Y*(xj,xi-l)i(s) i > j

where

(4.15c) 7i(s) = exp {-hl [pi(z)/c - qi(z)/pi(z)]dz
s

(4.15d) ;i(s) = exp fh!S[(qi(z) - pi(z))/pi(z)]dz
0

17



The last form of (4.15a) follows from our assumption that uerms of
-Pi/2

O(e ) are negligible, hence, the boundary layer in f(xi,xj )

at xj is well within subinterval I

Using (3.8a) and (4.15) in (4.7) we have
N

e(xj) = h[Y*(a,b)6 Y*(xjb)]SN - h6j = )
) jo N jo j~ y*(a x

N -

(4.16a) + hc(xj)S + h Y*(xjx i)R

e (x.) = - h{Y*(a,b)[pj/h - a (xj)/a(xj)]5j 0 + Y*(x.,b) S
J J J j J x I N

Y.(, x. ~
+ h [p./h (xj)/a(xj)]j Y * (a'xi-l R i

. , N ,
(4.16b) - ha(xj) [pj/h - a (xj)/a(xj)]S + h E Yxf R

i=j+l (

where

1.17,18) Pj h[p(xj)/E q(xji)/p(xj)] Y*(x i  )  -- a(xji)Y*(xjfx i )  I

and
A A

4.19a,b) Si = fi (s)(1-P)ri(s)ds R. = f (s)(l-P)ri(s)ds0 0
* *

We call p. the adjoint tension parameter and note that p. = Pj
) j Pj+l

when the tension parameters are selected according to (3.13a).

Observe that P. is large whenever hp(x)/E is large and this can3

induce large errors in e (x.) (cf. (4.16b)). These large errors

can be confined to the boundary layer near x = a if S. is sufficientlyJ
small. However, in order for e (x.) to be small within the boundary

layer Ri , i = 1,2,...,N, must also be sufficiently small. In this

paper, we have concentrated on producing good approximations outside

of boundary layer subintervals.

We first consider the taut spline approximation where (l-P)ri(s)

is given by (4.13,14). Expanding f(x), p(x), and q(x) in Taylor's

18



series about a suitable point on I. would reveal that fi[til-tis]
AA A

and ui[ti,l-tis] are O(h2) while ui[1-tis] and v il-ti, s] are

0(h). As previously noted, the choice of pi given by (3.13a) makes

ui(s) of 0(h) and

(4.20) vi(s) = pi(0) + pi(s) + 0(h/P)

If we further assume that ci, di/Pi, and Vci/h are bounded then

LiYh(ti,l-tis] is 0(h , and to leading order (4.13,14) become

(4.21) (1-P)ri(s) Z Yivi(s)g(l-s,t i)

This is not surprising since this term is due to the presence of-i(l-s)

the e functions in the taut spline approximation and these

functions are not present in the exact solution of Problem 1.

Substituting (4.21) into (4.19) gives
.22a, b) S i Z Y i f1 Tri(s) g (1-s,ti )v i(s)ds R. ~ Yi f i (s)g(l-st ti)v i(s)ds

A A

1 0 1' 11 10 i 1 1

Si may be further approximated by using Laplace's method (cf. BenderIA

and Orszag (3, Chap. 61). The essential idea is that ? i(s) is

exponentially small outside of a small neighborhood of s = 1 whenA

hpi(s)/e is large; hence, the integrand in (4.15c) may be replaced

by its value at s = 1. *Using (4.17) this gives

(4.23) (l-s) ^
(4.23) .i e g(l-s,ti)vi(s)ds.

Now, we see that S. may be reduced in magnitude by selecting t.
-p (1-s 1

such that e is orthogonal to g(l-s,ti), i.e., using (4.14)

we require* ,

(4.24) 1 e-P i (l-s) g(l-st)ds 1 l-ti-1/pi e-Piti0•1 gt l+Pi/p, - l-2t. - 001 1 1 1

If terms of 0(I/pi) are neglected, this implies
*

(4.25) t i  - (1/p i ) ln (l+ip/pi) , i = 1,2,...,N
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We refer to this choice of t. as Method 1. It can only be used1
* *

when pi and p. are such that t. < 1/2. When P. and P. are large
1 1

t. = 0(1/p i) and collocation is performed near the ends of each

subinterval. Using (4.14), (4.20), and (4.25) in (4.22b) implies
A -p t

(4.26) Ri ~ Yi i(l)vi(1 )e ~iz yip i (l) i (l ) "

If both c. and d. were bounded outside of the boundary layer,
1 1

then y would be 0(h) (cf. (4.10)). Thus, from (4.16) the bestii

that we could expect from Method 1 is for e(x.) and e (xj) to be

0(h). The computational evidence in Section 5 indicates that

this is the case.

A second possibility is to select ti so that Ri given by

(4.22b) is reduced in magnitude. This can be done by requiring

1 g(l-s,ti)ds = 0.
0 1

Using (4.14) this leads to

(4.27) 1 - co s h- -sinh -)]
Pi Pi

and we refer to this choice of ti as Method 2. We retained the
-Pi.(l-ti)1

0(e ) term in (4.14) when obtaining (4.27) in order that

ti approach the Gauss-Legendre point (cf. (4.33)) as pi - 0. When

Pi is large ti z (1/p.) in (pi/2) and in this case (3.12), (4.18),

and (4.23) imply that
A *

(4.28) S. ~ yipi(l)/Pi

The computational evidence in Section 5 indicates that S. is not
1

small enough to insure an accurate approximation of e (x.) at any

knot point. In fact, the indications are that e(x.) O(h 2 ) while

e (x.) Z 0(h2/E) when p. is large. Method 2 may still be used in

this case if one is not interested in predicting the slope of the
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solution as long as pi is not so large that it causes the discrete

system (2.18-20) to be ill-conditioned. When pi is small ti!1

approaches the Gauss-Legendre point and e(x.) and e (xj) will

approach 0(h 4 ) (cf. deBoor and Swartz [8]).

For polynomial approximations, we use (4.8) in (4.19) to

get ,
1 -Pi (l-s)

(4.29a) S. Z fe (s-ti)(s-l+ti )ri [ti, l-ti ,s]ds
0A

(2i(s)(s-ti)(s-l+ti)ri[ti, l-ti,slds14121b1 

1 

0

where, once again, Laplace's method was used to approximate the

singular integral Si.

Either Si or Ri may be reduced in magnitude by selecting t.1_ pi*(l.s)

such that either e or 1 is orthogonal to (s-ti ) (s-l+t i ),

respectively, i.e., by requiring either

| 0,b l-P. (l-s) I1

1.30ab) 1 e 1 (s-ti )(s-l+ti)ds = 0 or (s-ti)(s-l+t.)ds = 0
0 0

The option (4.30a) gives

(4.31) 
t 2 W (Pi/ 2 )

(4 31 t -- l+1-4w(p 72)/p i

where w(z) was defined in (2.12). This method is referred to as

Method 3. Once again, ti approaches the Gauss-Legendre pcint as
*

Pi - 0 and ti. 1/pi when Pi is large. Assuming that Yh and

Yh are bounded outside of the boundary layer region 
and using

(4.4b) and Taylor's series expansions of f(x) and Lyh(x) about

x. in (4.29b) leads to1 ~ 2  ,

(4.32) R. Z - h () [f(xi) - Lyh(X.)]
1 12 1i 1 Yhxi

21



This in turn via (4.16) would imply that e(xj) and e (xj) are

0(h2 ) at knot points outside of the boundary layer. However, it
of I1

is typically possible to replace (LYh(xj)) by (Ly(xj)) + 0(h)

(cf. Pruess [21] or Russell and Christiansen [24]). If this were
!3

so, this Ri, e(x.), and e (x.) would all be 0(h ) at knots away

from the boundary layer. This is in accord with the computational

results of Section 5.

The final possibility is to select t. so that (4.30b) is zero1

and this gives t. as the Gauss-Legendre point on the interval

(0,11, i.e.,

(4.33) t. = (1 - Vi//))/21

This choice of t. is known to give poor results when hp(x)/e >> 1;

however, in Section 5, we show that it may be used outside of sub-

intervals containing boundary layers prcvided that Yh and Yh are

computed accurately enough at the ends of subintervals containing

boundary layers.

4.3. Collocation Points for Problem 2

Again, let x be a knot point, say xj, and use (3.9) and (4.3)

to write

(4.34a) 1(x il+hs,xj) = f(xi,xj) ir(s) = 6i j(s) , i < j

(4.34b) T1(xj,xi+hs) = 1(xj,xi)X (s) = ijXi(s) , i > j ,

where now

4.34c,d) Iri(s) = exp {-hf V- (s)/ds}, X i+l(S) = exp {-hf /- (s) ds
s 0

The last forms of (4.34) again follow from our assumption that

terms of 0(e ) are negligible. Using (3.11) and (4.34) in

(4.7) we have
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: 4 .35a) e(x) Nj SN S S
S2 O i jj j+l

(4.35b) e (xj) = [-(P0/h + q 0 /q 0 ) 0j S1 + (PN/h - q, Nj SN

t * I-

+ (P /h + qj/qj) Sj - (pj/h -qj/qj) Sj+ 1 1

where

.36a,b) qj = q(xj) , p. = hV-q(x )/E

and

aS 2 -1/4 A

S3 S 0T (s) (E2q(xj)qj(s)] (1-P)rj(s)ds

7 2  -1/4
(4.37b) S j+ 1  X llj+l(S) [ E2q(x.)qj(s)] (1-P)rj+l(S)ds0

Thus, in this problem, there are no regular integrals to consider.

It suffices to find collocation points for S. since analogous3

results for Sj+ 1 will follow by replacing s by 1-s and making the

appropriate sign changes in (4.37b). Thus, using Laplace's method

we approximate (4.37a) by
1 -P#(l-s) 2 -1/4

(4.38) S fe [E q(x.)qj (s)] (I-P)r. (s)ds
3 0

For taut spline approximations, the choice of pj given by

2(3.13b) reduces both uj(s) and vj(s) (cf. (4.11)) to O(h /P.)

and it is still reasonable to select t. according to (4.25), i.e.,3

so that (4.24) is satisfied with p. and pj given by (3.13b) and

(4.36b), respectively. We continue to refer to this choice of

t. as Method 1. Likewise, for polynomial approximations, we select3

t. according to (4.31), i.e., so that (4.30a) is satisfied, and3

still refer to this as Method 3. Both methods reduce S. (hence,

Sj) to at least 0(ht.). Since t. is 0(1/o) or 0(1/p.) forj+l 333.

Method 1 or 3, respectively, and h/pj and h/p. are both 0(/YT)
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(cf. (3.13b) and (4.36b)), we would expect (cf. (4.35a)) e(x.)

to be at most 0(h/v) at knots away from boundary layers. The

computational results of Section 5 support this conclusion.

5. Numerical Results

In this section, we apply Methods 1, 2, and 3 of Section 4

to three examples having known exact solutions. Our calculations

are performed on a uniform partition with spacing h and the adjoint

tension parameters pj are approximated as

Ip(xk)/C - q(xk)/P(xk) I, lpp(xj)/eI > Jiq(x) I

(5.la) p. = h

- q (xj )/2E ,Jp(xj)/El < J~q(x H

j =

where

j - 1 if Vp(xj/E < 0

(5.1b) k =
j if ip(xj)/E > 0

The tension parameters p. and collocation points t. on Ij are chosen

as follows:

Method 1: Select p. according to (3.12) and

(5.2a) t. = min {(1/pj) ln (l+pj/pj) , (!-i// )/2}

Method 2: Select pj according to (3.12) and

(5.2b) t. = [1 - a cosh - I (I- sinh a) I

Method 3: Select p. = 0 and
(2 t/2)

( 5 .2 c ) t . -
3 ~ 1 + Y/1 -4 w p2T7-711

We also consider "partial tension" methods where the above

rules for selecting pj and t. are only applied on subintervals

containing boundary layers and collocation is performed at the
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Gauss-Legendre point with Pj = 0 on all other subintervals. TheseJ
4

methods can potentially converge as O(h ) outside of boundary

layer subintervals provided that the numerical solution and its

derivative have been computed accurately enough at the ends of

subintervals containing Loundary layers. Thus, we would not expect

partial tension to be useful with Method 2 since there can be large

errors in the derivative of the computed solution at the knots.

We denote the partial tension methods that use either Method 1

or 3 within boundary layer subintervals as either Method 1P or

3P, respectively. In order to automatically locate subintervals

containing boundary layers we first compute a preliminary solution,

0 0c.0, d. , j=0,1,. .. ,N using either Method 1 or 3 on all subintervals.

Using this solution we calculate

(5.3) yj = 1P[f(xj)-p(xj)dj - )cj /2C , j=l,2,...,N .

and set P= 0 and t. = (1-I//3)/2 on any subinterval having

(5.4) yj < 5 min {lyi 'Y 2  '''YN

where 6 is a threshold constant which we normally take as 50. The

problem is then re-solved using the new values of o. and t . ThisJ J

procedure is somewhat ad hoc and has not been totally effective,

e. ecially when h is relatively large and c.0 and d.0 are inaccurate.

This can cause errors in y. which can lead to the erroneous

conclusion that a subinterval contains a boundary layer when in fact

it does not, and vice versa.

Each example was solved for various values of E and h = (b-a)/N
ih , k = 2,3,..."7. The error in the solution and its

derivative on a partition with spacing h are measured by

(i. ) li) (i) (xj)I(5.5) l (i) lh, - max ly(i ) (x.) - Yh
0 x x CAI
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where A is a fixed uniform partition that is specified with each0
example. The order of convergence ri is computed as

(5.6) ri = in {I le(i)!lh, 0 /Ile(i) IIh/ 2 , 0) /in 2 i = 0,1

All calculations were performed in double precision on an

IBM 3033 computer. Errors that are less than 5 x 10-  are recorded

as zero in the tables.

Example 1:
' ' ' -x/2

ey + ((l+x)y) = e [(l+x)(3-x)+c/2]/2 , 0 < x < 1
(5.7)

-1/2 -73
y(O) = 0 , y() = e - e

The exact solution of this problem is

y(x) = exp (-x/2) - exp [-x(x 2+3x+3)/3c]

There is a boundary layer of width 0(s) near x = 0.

In order to demonstrate how poorly collocation at the Gauss-

Legendre points with cubic polynomials can behave on singularly-

perturbed problems, we solved (5.7) with E = 10- 4 and h = 1/8 by

this method and plotted the computed solution in Figure 2. It

bears little resemblance to the exact solution which is essentially

for x > 10 Pointwise the numerical solution approximately

lies on the straight line joining the two boundary values y(0)

and y(l).

We solved (5.7) for E = 10 - i , i = 2,4,6,8 using Methods 1, 2,

3, and 1P. The errors IIel h,A and Ile I Ih,0 on the partition

A0 = {1/8, 1/4, 3/8,..., 7/8} are presented in Tables 1 and 2,

respectively, for E = 102, 10 and 108. (The results for

C 10- 6 were essentially the same as those for 10- 8.) .Ile]lh, 0

is also plotted as a function of 1/h in Figure 3 for Methods 1, 2,
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and 3 and 10 - i , i=2,4,6,8. Tables 1 and 2 indicate tnat when

c/h << 1, Methods 1, 2, and 3 are converging as 0(h), O(h 2 ), and

0(h3 ), respectively, and that lell h,6 0 is converging as O(h 2/e)

for Method 2. For larger values of e, e.g. e = 10- 2 , the order

of convergence can be seen to increase as h decreases (e/h increases)

and the collocation points move closer to the Gauss-Legendre points.

Partial tension with Method 1P yields a dramatic improvement in

the results obtained by Method 1.

In order to provide some indication of how Methods 1, 2, and

3 behave on subintervals containing boundary layers and between

knot points, we have plotted their computed solutions yh(x) on

0 < x < 2h (Figure 4) and their errors e(x) and e (x) on 0 < x < 1

(Figures 5,6,7) for e = 10 - 4 and h = 1/8. The error in the Method 2

solution shown in Figure 4 is less than 3.2 x 10 - 3 for all x c Iiu12.

Method 1 yields poor accuracy for xcI I, but it does predict the

correct width of the boundary layer. Method 3 dissipates the boundary

layer; however, the dissipation is largely confined the subinterval

1 containing the boundary layer. Figures 5-7 show that all three

methods have spurious internal boundary layer jumps in yh(X) at

the ends of each subinterval and that Method 2, because of the

singular behavior of Yh in e at the knots, has spurious jumps in

Yh(x) itself. The jumps in Yh(x) are small and one is not normally

interested in the solution at points other than the knot points;

however, the results indicate that some caution is needed when

using (2.7-12) to interpolate the solution between knot points.

Figures 5-7 further indicate that the pointwise error is

largest at x= -- h and decreases at knots that are farther fran
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the boundary layer. This is generally true for other values of h

as well and, thus, we have tabulated Je(h) for Methods 1, 2, and
0-i 2i

3 with E = 10, i = 2,4,6,8 and N = 2 i = 2,3,...,7, in Table 3.

The results for MethoCs 2 and 3 indicate that le(h) cannot be

2 3reduced below 0(e) until c/h and e/h , respectively, are sufficiently

small.

Example 2:

-(x 2+)y = -(x 2+) (l+sin wx) - E 2r sin rx, 0 < x < 1(5.8)
y(0) = y(U) = 0

The exact solution of this example is

y(x) = 1 + sin nx - 1 {(l-e-i/ 2C)W(x//)e-X 2/2c

erf (/V17)

+ [l-e-i/ 2 eW(/ey-)e(l-x 2 )/2£y,

where

W(z) = e Z2erfc(z)
'' 2

(Note that y is multiplied by E instead of e for notational

simplicity.) The exact solution of (5.8) has a boundary layer

of width 0(/ ) near x = 0 and one of width 0(c) near x = 1. This

problem does not satisfy the assumptions of Problem 2 since
2+)

q(x) = -(x +0 cannot be bounded away from zero at x = 0 as e - 0;

thus, x = 0 is a turning point.

We computed solutions by Methods 1 and 3 for E: 10- i' i2,4,6,8.

Solutions were also calculated using the collocation points of

Method 3 (cf. (5.2c)) but with splines under tension instead of

polynomial splines, and these are denoted as Method 3T. The errors

Jjef h,L0 and le Ilh,A0 are presented in Tables 4 and 5, respectively,

for the partition A0 = /8, 1/4, 3/8,..., 7/8}. Partial Tension
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solutions using Methods 1 and 3T were also calculated and the

results were marginally more accurate than those of Method 1.

Tables 4 and 5 indicate that when e/h << lIel ih, 0 and
10

I je I h,A are O(eh) and O(h 2), respectively, for Method 1 and

0(h 3 ) and O(h 2), respectively, for Method 3T. The small errors

in Method 3 make it difficult to estimate the order of convergence.

The largest error on the partition A = {0,h,2h,...,Nh = 1}

used for the computation was once again at the end of a subinterval

containing a boundary layer, i.e., either at x = h or XN- 1 = (N-l)h.

To indicate how this error behaves, we present results for liel Ih,6

in Table 6. For small values of c/h we see that the polynomial

solution (Method 3) is not converging in h and that this situation

is remedied by using taut splines (Method 3T). Although we have

not done so, we suspect that it would have been sufficient to

use taut splines only within subintervals containing boundary

layers. Furthermore, Methods 1 and 3 do not appear to be uniformly

convergent in h for all c. All methods are converging as O(e)

which accounts for the remarkable accuracy when c is small.

Example 3: (cf. Hemker [15])

ey + xy = - e cos 7x - 7x sin 'rx , -i < x < 1
(5.9)

y(-l) = -2 , y(l) = 0

The exact solution of this example is

y(x) = cos 7x + erf (x/v/7-)/erf (I/V2-)

The problem has a turning point at x = 0 and the exact solution

features an interior or "shock" layer there.

Solutions were calculated by Methods 1, 2, 3, and 1P for

1 i , i=2,4,6,8. The errors Ie h, and Ile h,A on the
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partition A = {-3/4, -1/2, -1/4, 1/4, 1/2, 3/4) are presented

12 -4 -8
in Tables 7 and 8, respectively for c = , 10 and 10

(The results for e= 10- 6 were essentially the same as those for

C = 10- 8.) The results for lellh, A are indicating the same

orders of convergence as found in Example 1; however, for Methods 1

and 3, le f h, 0 is much more accurate than the corresponding

values for example 1.

In order to include the behavior of the solution in the turn-

ing point region, we have tabulated ijej h,A on the partition

A = {-l,-l+h,...,-l+Nh=l} used for the calculation in Table 9.

Note that 1jej 1h,A 0 = lel h,A for Method 1, so the maximum error

is not in the turning point region. Methods 2 and 3 are both

exhibiting regions of non-uniform convergence in h.

6. Discussion and Conclusions

Based on the results of Sections 4 and 5, we conclude that

splines under tension are most suitable in regions containing

boundary and/or interior layers and that collocation with piecewise

polynomials are superior elsewhere. In particular, when c/h << 1

Method 3 provides an approximation that converges outside of boundary

layer subintervals as 0(h ) when p(x) # 0 and at least 0(/h)

when p(x) 0 on [a,b]. Hemker [151 and de Groen and Hemker (101

reached similar conclusions with their exponentially fitted Galerkin

methods.

Partial tension can converge as Q(h 4 ) outside of boundary

layer subintervals, but either requires a knowledge of boundary

layer locations or a preliminary solution to automatically locate

them. The latter procedure may be useful for nonlinear problems
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where it is necessary to solve a sequence of linear problems to

find the solution; however, for linear problems it does not seem

to warrant the extra computational effort merely to obtain one

order of accuracy more than that available by Method 3.

The use of "one sided splines under tension," i.e., the

selection of basis functions that satisfy
I tII

(6.1) (n + on) 0 , 0 < s < 1

instead of (2.14) would undoubtably improve the results on sub-

intervals where p(x) # 0. A basis for these approximations would

contain either the exponential exp(-ps) when p > 0 or exp(-IpI(l-s))

when p < 0, and not both as in the current case. This would more

accurately represent the exact solution of problems where p(x) 0 0

on [a,b]. The results could possibly be further improved by not

restricting the collocation points to be placed symmetrically

on each subinterval and by using non-uniform partitions. Each

of these potential improvements is currently under investigation.

Extensions of our methods to higher order scalar and vector systems

of two-point boundary value problems as well as second order

parabolic partial differential equations are also being studied.
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METHOD NE=_10-2 ___ 0____ 4 _ _ 10-8

Hll th, r 0 lell h, r r0  r0
0 0 0e

14 3.87E-2 4.63E-2 4.37E-2

8 1.95E-2 1.0 2.44E-2 0.8 2.44E-2 0.8

16 7.06E-3 1.5 1.09E-2 1.2 1.09E-2 1.2

32 2.02E-3 1.8 5.15E-3 1.1 5.15E-3 1.1

64 2.50E-4 3.0 2.49E-3 1.0 2.53E-3 1.0

128 5.69E-6 5.5 1.21E-3 1.0 1.25E-3 1.0

2 4 2.34E-2 2.09E-3 1.28E-3

8 1.28E-2 0.9 1.13E-3 0.9 4.40E-4 1.5

16 1.07E-4 6.9 9.59E-5 3.6 1.07E-4 2.0

32 3.34E-5 1.7 2.14E-5 2.2 2.63E-5 2.0

64 4.83E-6 2.8 4.41E-6 2.3 6.50E-6 2.0

128 4.37E-7 3.5 7.39E-7 2.6 1.62E-6 2.0

3 4 4.37E-3 3.57E-5 1.34E-5

8 3.70E-3 0.2 5.56E-5 -0.6 1.77E-6 2.9

16 5.79E-7 12.6 2.76E-7 7.7 1.99E-7 3.2

32 5.92E-8 3.3 3.37E-8 3.0 3.38E-8 2.6

64 1.93E-9 4.9 4.19E-9 3.0 4.23E-9 3.0

128 6.43E-11 4.9 5.19E-10 3.0 5.37E-10 3.0

iP 4 2.67E-6 3.69E-7 1.10E-2

8 1.06E-6 1.3 3.38E-8 3.4 3.29E-8 18.4

16 4.64E-6 -2.1 1.86E-9 4.2 2.05E-9 4.0

32 2.12E-6 1.1 2.64E-11 6.1 1.33E-10 6.0

64 9.11E-8 4.5 5.89E-11 -1.2 .68E-12 3.9

128 14.68E-9 J 4.3 11.78E-11 1.7 [6.24E-13 3.8

Table 1: Error and Order of Convergence for Example 1 Measured on
A0 {1/8, 1/4, 3/8,..., 7/8}.



METHOD N =10 -2___ 10- 10-

14 6.38E-2 6.97E-2 6.99E-2

8 3.54E-2 0.8 4.34E-2 0.7 4.35E-2 0.7

16 1.22E-2 0.3 1.93E-2 1.2 1.94E-2 1.2

32 3.14E-3 2.0 9.15E-3 1.1 9.22E-3 1.1

64 1.15E-4 4.8 4,43E-3 1.0 4,50E-3 1.0

128 8.09E-5 0.5 2.15E-3 1.0 2.22E-3 1.0

2 4 4.14E 0 1.01E-2 1.01E 6

8 1.75E 0 1.2 2.43E-1 2.1 2.45E 5 2.0

16 3.84E-2 2.2 5.58E 0 2.1 6.02E 4 2.0

32 6.64E-3 2.5 1.37E 0 2.0 1.49E 4 2.0

64 8.24E-4 3.0 3.38E-1l 2.0 3.72E 3 2.0

128 7.10E-5 3.5 8.24E-2 2.0 9.27E 2 2.0

3 4 3.05E-3 5.68E-5 2.14E-5

8 1.99E-2 -2.7 9.62E-5 -0.8 3.14E-6 2.8

16 8.65E-5 7.8 4.90E-7 7.6 3.18E-7 3.3

32 1.92E-5 5.2 6.OOE-8 3.0 6.01E-8 2.4

64 1.37E-6 3.8 7.44E-9 3.0 7.53E-9 3.0

128 9.56E-8 3.8 9.23E-10 3.0 9.54E-10 3.0

iP 4 9.18E-4 6.08E-5 1.76E-2

8 1.41E-4 2.7 2.41E-5 1.3 2.19E-5 9.7

16 5.86E-4 1.3 6.46E-6 1.9 5.48E-6 2.0

32 2.68E-4 1.1. 7.33E-7 3.1 1.52E-6 1.9

64 1.15E-5 4.5 8.11E-7 -0.1 4.25E-7 1.8

128 5.93E-7 4.3 2.18E-7 1.9 1.46E-7 1.5

Table 2: Error and Order of Convergence in the Derivative of the
Solution of Example 1 Measured on =0 {1/8, 1/4, 3/8. .... /81.



METHOD N 10 i2 10-4  10-6 __0__ i8 -

____e(h)j r leh)l r je(h)j r ieh)l r

.14 3.87E-2 4.36E-2 4.37E-2 4.37E-2

8 1.95,C-2 1.0 2.44E-2 0.8 2.45E-2 0.8 2.44E-2 0.8

16 7.89E-3 1.3 1.28E-2 0.9 1.29E-2 0.9 1.29E-2 0.9

32 2.25E-3 1.8 6.57E-3 1.0 6.62E-3 1.0 6.62E-3 1.0

64 3.08E-4 2.9 3.30E-3 1.0 3.35E-3 1.0 3.35E-3 1.0

128 6.23E-6 5.6 1.63E-3 1.0 1.69E-3 1.0 1.69E-3 1.0

2 4 2. 34E-2 2. 09E-3 1. 30E-3 1. 28E-3

8 1.28E-2 0.9 1.13E-3 0.9 4.52E-4 1.5 4.40E-4 1.5

16 4.19E-3 1.6 7.15E-4 0.7 1.36E-4 1.3 1.26E-4 1.8

32 2.47E-4 4.1 5.39E-4 0.4 4.32E-5 1.7 3. 35E-5 1.9

64 4.45E-5 2.5 4.36E-4 0.3 1.76E-5 1.3 8.72E-6 1.9

128 5.48E-6 3.0 3.51E-4 0.3 1.05E-5 0.7 2.31E-6 1.5

3 4 4.37E-3 3.57E-5 1.28E-5 1.34E-5

8 3.70E-3 0.2 5.56E-5 -0.6 1.62E-6 3.0 1.77E-6 2.9

16 1.38E-3 1.4 6.17E-5 -0.2 3.35E-7 2.3 3.04E-7, 2.5

32 7.65E-4 0.9 6.34E-5 -0.0 8.50E-7 -1.3 2.99E-8 1.1

64 8.48E-5 3.2 6.29E-5 0.0 7.13E-7 0.3 2.99E-8 I0.0

128 4. 39E-6 4.3 6.05E-5 j0.1 6. 79E-7 0.1 3.61E-7 1-3. 6

Table 3: Error at the Knot Point x 1 for Examp~le 1.



METHOD N E_______10 __ 10~ 10______10_

I lei I h, A r 0  1 lel h, A r 0  1 leil h, L r 0  1Te7I7, r 0

14 7. 35E-3 1. 54E-4 1. 57E-6 1. 57E-8

8 3.83E-3 0.9 8.75E-5 0.8 9.19E-7 0.8 9.21E-9 0.8

16 3.99E-4 3.3 3.05E-5 1.5 3.24E-7 1.5 3.24E-9 1.5

32 4.67E-5 3.1 1.30E-5 1.8 1.49E-7 1.1 1.49E-9 1.1

64 3.20E-6 3.9 5.84E-6 1.2 7.28E-8 1.0 7.30E-10 1.0

128 2.05E-7 4.0 2.50E-6 1.2 3.61E-8 1.0 3.63E-10 1.0

3 4 3.13E-2 4.66E-4 4.67E-6 4.67E-8

8 2.93E-2 0.1 5.92E-4 -0.3 5.95E-6 -0.3 5.96E-8 -0.4

16 3.42E-4 6.4 9.92E-7 9.2 1.02E-10 15.8 1.04E-14 22.5

32 4.58E-6 6.2 5.97E-10 10.7 1.OOE-13 10.0 0.0

64 2.87E-7 4.0 1.57E-10 1.9 2.46E-14 2.0 0.0

128 1.80E-8 4.0 2.37E-11 2.7 6.OOE-15 2.0 0.0

3T 4 4.93E-3 8.55E-5 8.65E-7 8.65E-9

8 1.05E-3 2.2 4.85E-5 0.8 5.06E-7 0.8 5.06E-9 0.8

16 8.70E-5 3.6 3.84E-6 3.7 3.94E-8 3.7 3.94E-10 3.7

32 S. 76E-6 3.9 4. 73E-7 3.0 4.88E-9 3.0 4.88E-11 3.0

64 3.66E-7 4.0 5.74E-8 3.0 6.08E-10 3.0 6.09E-11 3.0

128 2.29E-8 4.0 6.66E-9 3.1 7.60E-11 3.0 7.61E-13 3.0

Table 4: Error and Order of Convergence for Example 21 Measured on

0= {1/8, 1/4, 3/8,..., 7/81j.



METHOD N 10 10 102 ___ ___

-TT'T7 A r 1  ef'fh, - r 1 FlfI Tf,6 r1 1 lIIh r 1

14 1.36E-1 28E1.7 -12. 78E-1

8 2.68E-2 2.3 8.65E-2 1.7 8.76E-2 1.7 8.76E-2 1.7

16 4.46E-3 2.6 2.37E-2 1.9 2.49E-2 1.8 2.49E-2 1.8

32 1.43E-4 5.0 5.88E-3 2.0 6.45E-3 1.9 6.46E-3 1.9

64 8.35E-6 4.1 1.36E-3 2.1 1.63E-3 2.0 1.64E-3 2.0

128 5.10E-7 4.0 3.02E-4 2.2 4.07E-4 2.0 4.09E-4 2.0

3 4 2.04E 0 2.97E 0 2.97E 0 2.98E 0

8 2.37E 0 -0.2 4.82E 0 -0.7 4.85E 0 -0.7 4.85E 0 -0.7

16 2.87E-2 6.4 8.37E-3 9.2 3 .93E-8 26.9 8.40E-7 2.5

32 4.12E-5 9.4 6.34E-7 10.4 4.09E-9 3.3 2.72E-8 4.9

64 2.13E-5 1.0 3.78E-8 4.1 4.86E-10 3.1 2.74E-8 0.0

128 1.34E-6 4.0 3.48E-9 3.4 9.52E-11 2.4 2.59E-8 0.1

3T 4 1.10E-1 2.01E-1 2.02E-1 2.02E-1

8 1.45E-2 2.9 7.31E-2 1.5 7.45E-2 1.4 7.45E-2 1.4

16 5.18E-4 4.8 1.89E-2 2.0 2.04E-2 1.9 2.04E-2 1.9

32 1.25E-4 2.1 4.63E-3 2.0 5. 33E-3 1.9 S. 33E-3 1.9

64 1.15E-5 3.4 1.07E-3 2.1 1.35E-3 2.0 1.35E-3 2.0

128 7.98E-7 3.8 2.28E-4 2.2 3.36E-4 2.0 3.39E-4 2.0

Table 5: Error and Order of Convergence in the Derivative of the
Solution of Example 2 Measured on A U1/8, 1/4, 3/8,..., 7/8,.



METHOD N 10 10 102 10~i-6i

hjej h, r lel hA r 1jjIh,A r hlel h,

14 7.35E-3 1.54E-4 1.57E-6 1..57E-8

8 3.83E-3 0.9 8.75E-5 0.8 9.19E-7 0.8 9.21E-9 0.8

16 3.99E-4 3.3 4.61E-5 0.9 4.76E-7 0.9 4.78E-9 0.9

32 4.74E-5 3.1 1.35E-3 -4.9 2.38E-7 1.0 2.41E-9 1.0

64 1.63E-5 1.5 2.81E-3 -1.1 8.28E-8 1.5 1.21E-9 1.0

128 1.42E-6 3.5 6.32E-4 2.2 9.01E-7 -3.4 6.01E-10 1.0

3 4 3.13E-2 4.66E-4 4.67E-6 4.67E-8

8 2.93E-2 0.1 5.92E-4 -0.3 5.95E-6 -0.3 5.96E-8 -0.4

16 2.21E-2 0.4 9.59E-4 -0.7 9.70E-6 -0.7 9.70E-8 -0.7

32 7.52E-3 1.6 1.72E-3 -0.8 1.76E-5 -0.9 1.76E-7 -0.9

64 9.96E-4 2.9 3.20E-3 -0.9 3.35E-5 -0.9 3.35E-7 -0.9

128 6.75E-3 3.9 5.98E-3 -0.9 6.55E-5 -1.0 6.55E-7 -1.0

3T 4 4.93E-3 8.55E-5 8.65E-7 8.65E-9

8 1.05E-3 2.2 4.85E-5 0.8 5.06E-7 0.8 5.06E-9 0.8

16 1.43E-4 2.9 2.86E-5 0.8 2.63E-7 0.9 2.63E-9 0.9

32 6.88E-6 4.4 1.28E-3 -5.5 1.32E-7 1.0 1.32E-9 1.0

64 2.15E-5 -1.6 8.97E-4 0.5 9.07E-8 0.5 6.65E-10 1.0

128 2.OOE-6 3.4 3.48E-4 1.4 8.80E-7 -3.3 3.35E-10 1.0

Table 6: Error and Order of Convergence for Example 2 Measured on
A (0f, h, 2h,..., Nh = 11.



METHOD N E -2 10- 4____ 10-

-7 e rH ej l, r 0 -'iei6r
__h, A__ _ _ _ 0_ _ _ h,% 0

14 S. 26E-1 5. 70E-1 5. 71E-1

8 2.57E-1 1.0 3.40E-1 0.7 3.41E-1 0.7

16 9.60E-2 1.4 1.83E-1 0.9 1.83E-1 0.9

32 1.79E-2 2.4 9.40E.-2 1.0 9.50E-2 0.9

64 1.88F.-4 6.6 4.73E-2 1.0 4.83E-2 1.0

128 1.20E-5 4.0 2.33E-2 1.0 2.43E-2 1.0

2 4 3.16E-1 6.06E-1 6.30E-1

8 1.OOE-1 1.7 4.24E-1 0.5 4.53E-1 0.5

16 1.45E-2 2.8 3.58E-2 3.6 3.43E-2 3.7

32 1.97E-3 2.9 9.78E-3 1.9 1.02E-2 1.7

64 1.76E-4 3.5 2.51E-3 2.0 2.66E-3 1.9

128 1.25E-5 3.8 6.09E-4 2.0 6.76E-4 2.0

3 4 5.34E-2 2.84E-2 2.77E-2

8 2.12E-2 1.3 6.52E-3 2.1 6.26E-3 2.1

16 2.45E-3 3.1 8.09E-4 3.0 8.10E-4 3.0

32 1.45E-4 4.1 1.03E-4 3.0 1.03E-4 3.0

64 8.46E-6 4.1 1.29E-5 3.0 1.30E-5 3.0

128 5.OOE-7 4.1 1.61E-6 3.0 1.63E-6 3.0

iP 4 2.74E-2 5.70E-1 5.71E-1

8 1.49E-2 0.9 1.51E-1 1.9 1.52E-I 1.9

16 7.80E-4 4.3 8.41E-6 17.5 9.44E-6 14.0

32 6.76E-5 3.5 2.09E-7 5.3 5.88E-7 4.0

64 4.34E-6 4.0 3.29E-7 -0.-7 3.67E-8 4.0

128 2.72E-7 4.0 2.56E-8 j 3.7 2.29E-9 4.0

Table 7: Error arnd Order of Convergence for Example 3 Measured on
A 0 = f-3/4, -1/2, -1/4, 1/4, 1/2, 3/4).



METHOD N 3_.0 2 10 410 i 8 
___

Hie'll th, 0 r1e'l ,0 r 1I le'l hA 0

4 1.42E 0 1.71E 0 1.71E 0

8 1.36E 0 0.1 2.07E 0 -0.3 2.07E 0 -0.3

16 3.10E-2 5.5 2.38E-4 13.1 5.07E-7 22.0

32 2.78E-2 0.2 4.73E-4 -1.0 1.25E-7 2.0

64 2.OOE-2 0.5 6.71E-4 -0.5 6.OOE-8 1.1

128 1.39E-3 3.8 7.68E-4 -0.2 5.23E-8 0.2

2 4 1.90E 1 2.79E 3 2.91E 7

8 7.18E 0 1.4 1.18E 3 1.2 1.19E 7 1.3

16 1.48E 0 2.3 3.45E 2 1.8 3.51E 6 1.8

32 1.97E-1 2.9 9.03E 1 1.9 9.26E 5 1.9

64 1.76E-2 3.5 2.26E 1 2.0 2.37E 5 2.0

128 1.26E-3 3.8 5.49E 1 2.0 5.97E 4 2.0

3 4 8.OlE-2 5.45E-4 5.39E-8

8 2.31E-1 -1.5 6.04E-4 -0.1 3.69E-8 0.5

16 9.31E-3 4.6 3.75E-6 7.3 0.0

32 8.58E-4 3.4 8.72E-8 5.4 0.0

64 6.02E-5 3.8 4.88E-8 0.8 0.0

128 3.96E-6 3.9 2.45E-8 1.0 0.0

iP 4 2.31E 0 1.71E 0 1.71E 0

8 4.16E-1 2.5 2.07E 0 -0.3 2.07E 0 -0.3

16 4.43E-3 6.6 9.57E-3 7.8 9.55E-3 7.8

32 1.87E-3 1.2 2.OOE-3 2.3 2.08E-3 2.2

64 1.12E-4 4.1 8.03E-4 1.3 6.77E-4 1.6

128 7.52E-6 3.9 9.36E-5 3.1 (1.90E-4 1.8

Table 8: Error and the Order of Convergence in the Derivative of the
Solution of Example 3 Measured on
A = {-3/4, -1/2, -1/4, 1/4, 1/2, 3/4}.



ETHOD N 10 2 10- 10- 108
______ 7leIh. r 1jeIjh r IjeIj, r 1jej~, ~r

1, 4 5.26E-1 5.70E-1 5.70E-1 5.71E-1

8 2.57E-1 1.0 3.40E-1 0.7 3.41E-1 0.7 3.41E-1 0.7

16 9.60E-2 1.4 1.83E-1 0.9 1.83E-1 0.9 1.83E-1 0.9

32 1.81E-2 2.4 9.40E-2 1.0 9.50E-2 0.9 9.50E-2 0.9

64 1.91E-4 6.6 4.73E-2 1.0 4.83E-2 1.0 4.83E-2 1.0

128 1.22E-5 4.0 2.33E-2 1.0 2.43E-2 1.0 2.43E-2 1.0

2 4 3.16E-1 6.06E-1 6.25E-1 6.30E-1

8 1.00E-1 1.7 4.24E-1 0.5 4.51E-1 0.5 4.53E-1 0.5

16 1.77E-2 2.5 2.99E-1 0.5 3.66E-1 0.3 3.68E-1 0.3

32 2.11E-3 3.1 1.82E-1 0.7 3.38E-1 0.1 3.42E-1 0.1

64 1.84E-4 3.5 6.09E-2 1.6 3.20E-1 0.1 3.35E-1 0.0

128 1.31E-5 3.8 9.39E-3 2.7 2.88E-1 0.2 3.33E-1 0.0

3 4 5.34E-2 9.22E-2 9.29E-2 9.29E-2

8 2.12E-2 1.3 7.25E-3 3.7 7-.48E-3 3.6 7.48E-3 3.6

16 5.68E-3 1.9 1.52E-2 -1.1 8.10E-4 3.2 8.10E-4 3.2

32 3.02E-4 4.2 4.19E-2 -1.5 6.90E-4 0.2 1.03E-4 3.0

64 1.89E-5 4.0 1.89E-2 1.1 2.68E-3 -2.0 2.80E-5 1.9

128 1.19E-6 4.0 1.49E-2 0.3 1.OOE-2 -1.9 1.09E-4 -2.0

iP 4 2.74E-2 5.70E-1 5.71E-1 5.71E-1

8 1.49E-2 0.9 4.37E-1 0.4 4.45E-1 0.4 4.45E-1 0.4

16 3.27E-3 2.3 1.34E-1 1.7 1.43E-1 1.6 1.43E-1 1.6

32 1.93E-4 4.1 2.94E-2 2.2 3.77E-2 1.9 3.78E-2 1.9

64 1.33E-5 3.9 2.89E-2 0.0 9.50E-3 2.0 9.59E-3 2.0

128 8.28E-7 4.0 8.06E-3 1.8 2.32E-3 2.0 2.41E-3 2.0

Table 9: Error and Order of Convergence for Example 3 Measured on
A = {-I, -1+h, -1+2h, ... I -1-INh = 1}.



Figure Captions

Figure 1: Canonical basis functions n0 (s,p) and nl(sP) on -1 < s <

for p = 0.01 (Figure la) and p = 10 (Figure lb).

Figure 2: Solution of Example 1 using cubic polynomials and

collocation at the Gauss-Legendre points.

Figure 3: Error Ile(h) 1j,0 for Example 1 using Methods 1, 2, and

3 and measured on the partition A0 = {1/8, 1/4, 3/8,..., 7/8}.

Figure 4: Solutions of Example 1 using Methods 1, 2, and 3 on

0 < x < 1/4 for e = 10 - 4 and h = 1/8.

Figure 5: Error e(x) and its derivative e (x) in the solution of

Example 1 by Method 1 for c = 10- 4 and h = 1/8. (Note:

e (0) = -5.76 x 103.)

Figure 6: Error e(x) and its derivative e (x) in the solution of

Example 1 by Method 2 for E = 10- 4 and h = 1/8.

Figure 7: Error e(x) and its derivative e (x) in the solution of

Example 1 by Method 3 for e = 10- 4 and h = 1/8. (Note:

4
e (0) = 1.0 x 104.)
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